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Sound wave structures, downstream of moving incident shocks reflecting from straight 
compressive wedges, are analysed for both weak and strong Mach reflections (MR) 
using existing experiments. It is shown that the reflected waves can be well described 
by using the acoustic criterion or the weak oblique shock approximation, when 
the classical three-shock theory gives forward-facing reflected shock solutions. The 
predicted triple-point trajectory angles are found to be in close agreement with the 
experiments. The distinction between the applicabilities of the two methods is given 
by an analytically defined ‘smallness’ for the angle of reflecting wedges. The physics 
of the success of the two methods is discussed. It is concluded that forward-facing 
reflected shock solutions of pseudo-steady MR should be ruled out physically because 
sound waves cannot coalesce into Mach waves that propagate upstream of the triple 
point. In their place, MR-like phenomena occur with the reflected waves being normal 
Mach waves or finite compression waves for ‘small’ or ‘not-small’ reflecting wedge 
angles, respectively, and they are classified as the first- or second-kind von Neumann 
reflections, respectively. Boundaries separating regimes between the first and second 
kinds of von Neumann reflections, and backward-facing MR are determined. 

1. Introduction 
The problem of pseudo-steady oblique shock reflection has been investigated an- 

alytically and experimentally by many researchers since Mach (1 878) presented his 
work on the subject more than a century ago. Von Neumann (1945) formulated the 
classical two- and three-shock theories for regular reflection (RR) and Mach reflection 
(MR) in pseudo-steady frames of reference relative to the reflection point and triple 
point, respectively, the clarity of which still pervades thinking about the problem 
today. He also found that the strength of the incident oblique shock becomes a nec- 
essary factor for determining the transition between RR and MR. Using a property 
of the shock polar diagram, he gave a rigorous definition of the boundary between 
weak and strong incident shocks. The limiting condition for a perfect gas with the 
ratio of specific heats y of 1.4 is equivalent to an incident propagating shock Mach 
number of 1.46. 

However, it has been known since the important shock reflection experiment of 
Smith (1945) in pseudo-steady flows in air and the discussion of them by Bleakney & 
Taub (1949) that this classical three-shock theory almost always failed to agree with 
experiment for weak MR. Perhaps the most violent disagreement, as noted by them, 
is that Mach reflections exist where there are no non-trivial solutions from the three- 
shock theory when the incident shock becomes sufficiently weak. This was called a 
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MR-like phenomenon in a quite recent international workshop (Sakurai et al. 1989) on 
the subject of weak MR. The theory begins to provide physically acceptable solutions 
and gives some less-than-modest agreement with experiment when the incident shock 
Mach number M ,  approaches the weak/strong boundary and the reflecting wedge 
angle nears the transition from MR to RR. Remarkably, the same theory succeeds 
brilliantly for many strong MR (without real-gas effects) when M ,  moves away from 
the weak/strong boundary. For RR, the von Neumann two-shock theory in general 
succeeds for both weak and strong incident shocks, except near the transition to 
M R  where RR apparently persists beyond the detachment boundary line in pseudo- 
steady flows. The almost complete failure of the theory for weak MR, its success 
for many strong MR, and the apparent persistence of RR into the regime of MR in 
pseudo-steady flows have been termed 'the von Neumann paradox' in the literature 
(e.g. Griffith 1981; Colella & Henderson 1990; and Ben-Dor 1992). In seeking an 
explanation for the incapability of the three-shock theory to adequately describe 
weak MR, fundamental assumptions of the theory, such as viscosity, finite thickness 
in reflected/Mach shocks, non-self-similarity, and non-uniformity, must be reviewed 
as have been reported, mostly to not much avail, by Sakurai (1964), Sternberg (1959), 
Henderson & Siegenthaler (1980) and Sakurai et al. (1989). In fact, these effects are 
always there for both weak and strong MR. If they are of importance for adequately 
describing weak MR, why does the same theory brilliantly describe most of the 
strong MR (where the reflected waves are also often curved) without considering 
them? It is worth mentioning reported evidence of viscous and unsteady effects found 
in low-density experiments (initial pressures of a few torrs) where the triple point 
does not necessarily travel along a linear trajectory through the leading edge of a 
reflecting wedge (Walenta 1983; Schmidt 1985). These effects, however, are considered 
negligible for the high-density experiments to be discussed in the present work. 

Recently, Colella & Henderson (1990) numerically simulated weak MR and MR- 
like phenomena, using adaptive mesh refinement techniques, by solving the unsteady 
two-dimensional Euler equation. They showed that there is one kind of weak irregular 
wave reflection called a von Neumann reflection (vNR). The reflected wave of vNR is 
not a shock but a smoothly distributed compression wave of finite thickness, and the 
incident and Mach shocks appear to form a single wave with a continuously turning 
tangent. Their analysis therefore explains why the conventional theory cannot be 
applied to vNR. They further hypothesized that a vNR exists under two conditions: 
the first, by experiment, is when the predicted angle between the reflected shock 
and slipstream from the three-shock theory becomes greater than 90"; the second 
is when the three-shock theory has no physically acceptable solutions (Henderson 
1987). On the other hand, Olim & Dewey (1992) confirmed the observations of other 
workers that the three-shock theory is unable to describe MR of incident shocks 
with strengths between Mach number 1.1 and 1.5, and for wedge angles not far 
from those at which transition from RR to MR occurs. The resulting three-shock 
configuration is such that the reflected wave is supersonic and has the characteristics 
of a shock wave, and that there is a measureable discontinuity in the slopes of the 
incident and Mach stem shocks at the triple point. In this work, we refer to the 
existing unexplained large discrepancy between the classical three-shock theory and 
experiment for pseudo-steady MR as a consequence of the occurrence of MR-like 
phenomena. 

The questions now raised are the following: Does the hypothesized vNR actually 
correspond to observed MR-like phenomena? Does a general vNR exist without 
the restriction of a smooth turning tangent of the incident and Mach shocks at 
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the triple point? Can the solution of a vNR be predicted from a modified three- 
shock theory instead of from a sophisticated numerical calculation? The object of 
this paper is to seek explanations for the almost complete and partial failures of 
the classical three-shock theory in describing MR-like phenomena. We still employ 
essentially the same von Neumann theory with the exception of allowing degenerate 
reflected shock solutions. This gasdynamics discontinuity approach is considered more 
appropriate than Whitham’s ray shock method (Whitham 1957), because Whitham 
did not consider the existence of the reflected shock and slipstream which we believe 
is important for the case of MR. Henderson (1980) made a quite detailed comparison 
between the theory and his pseudo-steady MR data. He found that Whitham’s theory 
does not, in general, explain the observed MR well and it is not applicable to RR. 
The prime consideration in this work is to clarify what are physically acceptable and 
unacceptable reflected shock solutions of pseudo-steady MR. Since it is known that 
the theory explains most of the strong MR well, one should look for degenerate 
reflected shock solutions when incident shock waves become weak. To these ends, 
we analyse sound wave structures downstream of existing, observed pseudo-steady 
MR in addition to calculating possible MR solutions. By analogy with simple 
sound generation by a supersonically flying wedge, it is shown that the source 
of reflected disturbances leading to the formation of a reflected shock wave in 
pseudo-steady M R  originates from the collisions between fluid particles behind the 
incident shock and the slipstream, as the triple point propagates upstream. It is 
noted that uniform sound speed immediately behind the incident shock is used 
to construct sound waves characterizing the initial stage of the converging process 
of the downstream Mach waves, which may lead to the formation of a reflected 
shock wave. This initial development of downstream sound structures helps clarify 
physically acceptable and unacceptable reflected shock solutions of pseudo-steady 
MR. 

It is important to remark on Hornung’s information condition concept (Hornung 
1986), by which he argues, for the transition between RR and MR, that MR 
(which displays a characteristic length at the reflection point) is not possible when 
the information about the characteristic length of the problem does not reach the 
reflection point unless the flow behind the reflected shock becomes subsonic relative 
to the reflection point. However, in line with the analysis of sound structures proposed 
here, one may further argue that RR is not possible when the information about 
the wedge corner, i.e. sound waves generated there, reaches the reflection point 
unless the flow behind the incident shock is supersonic relative to the reflection point. 
This simple sound consideration addresses the issue of the persistence of RR into 
the regime of MR from the viewpoint of a sufficient condition for the existence of 
MR. Finally, it is worthwhile to remark on the various linearized solutions for the 
shock wave pattern of pseudo-steady MR at nearly glancing incidences obtained by 
Bargmann (1945), Lighthill (1949), and Ting & Ludloff (1951) by solving the Euler 
equation, as discussed by Fletcher, Taub & Bleakney (1951). Their discussion was 
motivated by attempting to clarify the large discrepancies between observed MR-like 
phenomena and predictions from the three-shock theory. Essentially, these authors 
assumed a zero-order solution and determined a first-order solution in terms of it. 
The zero-order solution used is a trivial one in which the reflected wave is assumed 
to be a sound signal and hence of zero strength. They then deduced that on the 
reflected shock the pressure variation across it is zero. Thus, in the neighbourhood of 
the triple point, these first-order solutions correspond to the assumed trivial solution. 
In addition to this limitation restricted by the asymptotic solution of the linearized 
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FIGURE 1. Schematic illustration of a propagating MR over an oblique wall. i, incident shock; 
r, reflected shock; m, Mach stem; s, slipstream; T, triple point; Ow, wedge angle; x, triple-point 
trajectory angle; M,, incident shock Mach number. 

differential equations, there are two major difficulties with this approach. The first is 
that the locations and strengths of the reflected and Mach shocks which are to be 
determined by the analysis also specify the boundary conditions for the problem. The 
second is the inadequacy of the method for describing the slipstream which, in the 
case of weak MR, seems experimentally to be a sharp density discontinuity, as was 
reported by them. 

This paper is organized in the following way. First, the classical three-shock theory 
is briefly reviewed. Emphasis is given to the calculation of forward-facing reflected 
shock solutions of pseudo-steady MR. The von Neumann paradox of weak MR 
is discussed in $3. Attention is paid to the coincidence of the worsening of the 
three-shock theory in describing pseudo-steady MR with the requirement of forward- 
facing reflected shock solutions from the theory. Analyses of sound wave structures 
downstream of existing, observed pseudo-steady MR and MR-like phenomena are 
given in 94 for five representative cases. Attention is centred on the process of 
generation of reflected sound disturbances giving rise to coalescing Mach waves 
downstream of incident oblique shock waves. Comparisons between computed and 
measured triple-point trajectory angles and reflected shock wave angles along with 
the comparisons of observed reflected wave angles with constructed downstream 
sound structures are made to assess physically acceptable and unacceptable multiple 
reflection solutions of pseudo-steady MR. In the process, the success of the acoustic 
criterion and the weak oblique shock approximation for describing reflected waves 
of MR-like phenomena are verified. We shall present pressure-deflection shock and 
compression polar solutions of pseudo-steady MR as supporting data in addition to 
the experiments. 

In order to keep the physics as simple as possible, only existing experiments of 
single Mach reflection type over straight wedges with insignificant real-gas effects 
are selected for analysis in the present study. The initial pressure in the chosen 
shock-tube experiments is relatively high. This has the effect of enhancing the quality 
of flow visualization pictures and minimizing the relatively unimportant viscous 
displacement effect. 
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FIGURE 2. The wave configuration of a MR viewed from an observer moving with the triple point 
T :  (0)-(3), flow states; 4, angle of incidence; 0, deflection angle; i, r, m, and s are defined in the 
caption of figure 1. 

2. The von Neumann three-shock theory 
A typical pseudo-steady single Mach reflection, as obtained in shock tube ex- 

periments over straight wedges, is shown schematically in figure 1: there are four 
discontinuities - the incident shock i, the reflected shock r, the Mach stem m, and the 
slipstream s - which coincide at the triple-point T, making a triple point trajectory 
angle x with the wedge surface having an inclination angle 8,. Since the analytical 
formulation of the von Neumann three-shock theory for a perfect gas is well-known 
(e.g. Ben-Dor 1992), the theory is not discussed in detail here. Basically, it consists 
of 12 gasdynamics discontinuity conservation equations describing incident, reflected, 
and Mach stem shocks; and two pressure and flow deflection identity equations 
describing a contact discontinuity separating the reflected and Mach shocks that are 
solved for 14 flow variables behind these three confluent shock waves. The regions 
bounded by the thin and planar discontinuities are assumed uniform and in ther- 
modynamic equilibrium. Fourteen typical flow variables are p1 (static pressure), TI 
(static temperature), u1 (flow velocity), 42 (shock wave angle), 1 9 ~  (deflection angle), 
p 2 ,  T2,  u2, H2,  p 3 ,  T3, u3, 43, 03 .  Subscripts 0, 1, 2, and 3 refer to the flow states as 
defined in figure 2. These subscripts so defined are used throughout this paper. 

The solution for this system of nonlinear algebraic equations of pseudo-steady 
MR must be sought by specifying upstream conditions po, To, uo, and $1 with an 
assumed initial x. Since this angle does not enter into any of the 12 conservation 
equations explicitly, the solution procedure is an iterative one by determining x until 
the boundary condition describing the Mach stem and wedge surface is satisfied. The 
usual boundary condition is that the Mach stem is straight and perpendicular to the 
wall, so it pulls fluid particles parallel to the wall behind it (Law & Glass 1971). This 
boundary condition is experimentally verified in the five MR cases to be discussed 
in 54, and it is referred to as the normal, straight Mach stem boundary condition 
throughout this paper. 

For a given wedge angle and y, the predicted x and reflected shock angle 4 2  increase 
as the incident shock Mach number M,$ decreases. This is shown in figures 3 and 4 
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for four different reflecting wedge angles in air for 1.0 < Ms < 4.0. A reflected shock 
is classified to be backward- (or forward-) facing when the reflected shock angle, 
i.e. the angle between the incident flow direction and the emanating direction of the 
reflected shock, is less (or greater) than 90". For a limiting weak/strong M ,  of 1.46 
with y = 1.4, a backward-facing reflected shock solution can be obtained only when 
the wedge angle is larger than 21.1'. Likewise, there exists, for given 8, and y, a 
changeover M, below which the reflected shock of MR becomes forward-facing. This 
M,  is called the critical incident shock Mach number in the present work. For y = 1.4, 
the critical M,  is 2.01 for a 10" wedge. It becomes 4.01 or 1.49 for 2" or 20" wedges, 
respectively. A boundary line separating backward- from forward-facing reflected 
shock solutions is shown in figure 3. One can see that the critical M ,  increases rapidly 
as 8, decreases from 10" to 2". 

It is noteworthy that a forward-facing reflected shock solution of pseudo-steady 
MR always exists when the incident shock becomes sufficiently weak, even though it 
has been reported otherwise in the literature (e.g. Dewey et al. 1989; Ben-Dor 1992) 
that a M R  solution is theoretically unobtainable because the reflected shock polar 
does not intersect the incident polar. Henderson (1987) defines an incident shock 
as 'extremely weak' when M ,  < 1.083 ( y  = 1.4), and he shows that only RR and a 
hypothetical 'continuous wave reflection' can exist for the extremely weak shocks. The 
continuous wave reflection is assumed when the three-shock theory cannot provide a 
MR solution. He then reported that the transition from RR to the continuous wave 
reflection occurs when 41 increases to 54.29' for M ,  = 1.083. However, it can be 
seen from the shock polar solution given in figure 5 that a forward-facing reflected 
shock solution from the three-shock theory with a predicted x (27.88'), satisfying the 
normal, straight Mach stem boundary condition, is indeed obtained at 41 = 52.12' 
for the same incident shock reflecting from a 10" wedge. 
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FIGURE 4. Variations of the three-shock theoretical predictions and experimental observations of $2 
with the incident shock Mach number for four different wedge angles. For symbols see the caption 
to figure 3. 
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FIGURE 5. The shock polar representation of a forward-facing reflected shock solution of a weak 

MR ( M s  = 1.083,8, = lo"). The flow states 1-3 are defined in figures 1 and 2.  

3. The von Neumann paradox of weak Mach reflections 
Despite the fact that both backward- and forward-facing reflected shock waves are 

theoretically permissible solutions of pseudo-steady MR, the observed reflected waves 
are never inclined forward of the triple point. Actually, even a normal shock reflected 
off the triple point does not materialize in reality. In its place, a near-forward-facing 
MR-like phenomenon with a visible slipstream is always observed experimentally 
(e.g. Bleakney & Taub 1949; Colella & Henderson 1990; and Ben-Dor 1992). As 
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the critical M ,  has values obviously not limited to weak shock waves, it is not 
surprising to find that MR-like phenomena exist for strong incident shocks reflecting 
over relatively small wedge angles. 

Figures 3 and 4 show comparisons between the predictions from the classical 
three-shock theory and experiment for x and 42 for four reflecting wedge angles. 
M,  is limited to not exceed 4 to avoid any significant real-gas effects in air and 
nitrogen. The experimental data were taken from the works of Deschambault 1984 
(solid symbols), Ben-Dor 1978 (cross symbols), and Smith 1945 (open symbols). It 
is found that some of the x and 4 2  reported by Deschambault were not accurately 
measured. Reflected shock angles should be measured close to the triple point. These 
angles were remeasured from his 16.5 cm by 12.3 cm size interferometric pictures 
with a vernier scale from a Mutoh protractor. The accuracy of the scale is within 
one twelfth of one degree. The absolute error in determining M,  in his experiments 
was reported (Deschambault 1984) as 0.01 for M ,  = 1.1 and 0.22 for M ,  = 10.0. The 
uncertainty in the measurement of x and 4 2  from his interferograms is estimated 
at k0.15' and f0.5', respectively. This angle measurement method is also used for 
determining various wave angles in observed MR configurations to be discussed in 
$4. The relative error of M,  in Ben-Dor's experiments was estimated (Ben-Dor 1978) 
to be within 1.25% at M,  = 2. We could not find an estimate for the accuracy of 
M ,  in Smith's experiments, and there are no photographs for the experimental data 
reported in his work. Smith's data shown in figures 3 and 4 were therefore taken 
directly from his report. 

It can be seen from these two figures that, except for the 2" wedge where data are 
not available for 2 < M,  < 4, the agreement between the experiment and three-shock 
theory for both angles is excellent when M, is greater than about 2.3. The agreement 
begins to deviate when it becomes close to 2. It then worsens rapidly as M,  further 
decreases towards its critical value where 4 2  approaches 90" (i.e. becomes forward- 
facing). In fact, the trend of the variation between the predicted and measured x 
moves in increasingly opposite directions as M ,  further decreases below its critical 
value! The fact that a triple-point trajectory separates two differing flows behind 
incident and Mach shocks while a reflected shock may degenerate to a Mach wave 
suggests that x is more appropriate than 4 2  for characterizing a MR. Therefore, it is 
hard to escape the notion of a paradox when considering why the three-shock theory 
fails so miserably for weak MR while the same theory succeeds brilliantly for many 
strong MR. One also learns from these comparisons that the failure of the theory is 
probably associated with the requirement of forward-facing reflected shock solutions 
as M, further decreases for a given wedge angle. 

A comparison between figures 3 and 4 shows that there is an intrinsic difference 
between the trends in the variation of the measured x and 42 for weak MR, with 
the former continuing to decrease while the latter levels off, as M ,  decreases below 
its critical value. One further notices that the measured 4 2  does not even seem to 
depend on the wedge angle when the predicted values approach or exceed 90". In 
fact, from the flow visualization pictures of MR available in current research, it is 
found that observed MR-like phenomena always exhibit near-limiting 90" reflected 
wave configurations in the vicinity of the triple point. These observations suggest 
that viscosity or flow non-uniformity may not be attributed to the causes of the von 
Neumann paradox of weak MR. In the following, this problem is examined from the 
viewpoint of analysing sound wave structures downstream of incident propagating 
oblique shock waves in addition to calculating multiply possible MR solutions. It is 
shown that the sound structures provide physical bases for using the acoustic criterion 
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or the weak oblique shock approximation for accurately describing observed reflected 
waves in MR-like phenomena. They also lead to an important conclusion for the 
physical non-existence of forward-facing reflected shock waves of pseudo-steady MR. 

4. Analysis 
Oblique shock reflections are nonlinear phenomena where multiple solutions often 

exist for a given boundary condition. Therefore, it is logical to first look at the 
dynamic process that may lead to the formation of a shock wave. Figure 6 shows 
a wedge propagating in a compressible medium. When the relative velocity of fluid 
particles and the wedge exceeds the local fluid sound speed, sound waves generated by 
the collisions between fluid particles and the wedge surface give rise to Mach waves. 
This flying wedge can be regarded as a heterogeneous source of sound generation in 
an otherwise homogeneous flow field. Subsequent addition of individual Mach waves 
emitted from the wedge surface forms compression waves that may then interact 
nonlinearly with each other resulting in the formation of an induced shock wave. 
The dynamics of this shock-inducing flow field is then determined by the self-similar 
sound-generating and sound-propagating process, which is characterized by the two 
competing velocities: the relative velocity of the upstream fluid and the propagating 
wedge, and the local fluid sound speed. The former velocity essentially constitutes a 
path of sound generation centres, along which the sound structure of a compressible 
flow field can be drawn. A sound generation centre is the location from which sound 
disturbances propagate at a given time. It is believed that this sound-originated 
from-Mach-to-shock formation process can be applied directly to the analysis of the 
sound structure downstream of a pseudo-steady MR. 

The origin of sound generation responsible for the formation of a reflected shock 
wave in pseudo-steady MR can be regarded as the collisions between fluid particles 
behind the incident shock and the induced slipstream as the triple point propagates 
upstream. The self-similarly growing slipstream stemming from the triple point plays 
an effective role as the Mach-wave-emitting surface of the flying wedge for fluid 
particles downstream of the incident shock wave. The key consideration in the 
construction of sound waves downstream of a pseudo-steady MR is to recognize that, 
before a reflected shock is formed, radially propagating sound waves so generated are 
convected uniformly by the actual fluid particle velocity behind the incident shock. 
Thus, the path of a propagating triple point should be available, in addition to a 
given combination of M ,  and O w ,  before a downstream sound structure is analysed. 
It is important that uniform sound speed immediately behind the incident shock is 
used to construct the downstream sound waves, irrespective of the existence of a 
reflected shock wave. This sound construction can be regarded as carrying out a 
thought experiment for simulating an initial sound development in the coalescing 
process of the downstream Mach waves, when an incident shock first encounters a 
wedge corner. It is known that the shock reflection process over plane wedges in 
shock tubes has been found by many experimentists to be self-similar. Therefore, the 
downstream sound waves can be constructed at locations not near the wedge corner 
in order to compare with available observed MR configurations, while the shape and 
position of the constructed sound structure relative to a given MR pattern remain 
the same as those during the early stage of the same phenomenon near the wedge 
corner. We do not, of course, consider the incipient microscopic delay regime of the 
initiation of MR, as discussed by Walenta (1983). 

There are two important reasons for analysing these uniform downstream sound 
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FIGURE 6. Sound generation by a flying wedge. 

structures. First, by the nature of sound propagation, locally uniform sound waves 
inherently exist in both subsonic and supersonic flows when there is a source of 
sound generation initially present in the flow. For supersonic flows, their presence 
becomes more noticeable for a weak shock flow field than for a stronger one, where 
Rankine-Hugoniot jump relations are so apparently applicable to describing the 
latter. Secondly, the construction of the downstream sound structure is not meant 
to approximate a reflected shock wave in the first place; it is done to identify 
the physically acceptable branch of multi-valued shock reflection solutions of a 
pseudo-steady MR and to provide physical grounds for explaining possible reflected 
compression wave solutions, as previously discussed by Colella & Henderson (1 990). 

In the following, sound wave structures downstream of both weak and strong 
MR observed in Deschambault’s (1984) interferometric experiments in air and those 
of a weak MR and a vNR in argon reported by Colella & Henderson (1990) are 
graphically constructed. Deschambault’s work on pseudo-steady oblique shock wave 
reflections in air provides probably the best available interferometric pictures for 
the propagation of MR from the wedge tip for a wide range of M ,  and 8,. It 
is most instructive to construct the downstream sound waves induced by the triple 
point. This includes the first sound wave generated at the wedge corner. For the 
sake of clear illustration, only sound waves induced by the triple point are drawn. 
The constructed sound structures are shown in the same figures as the traced MR 
configurations obtained from the experiments so that direct comparisons between 
the two can be made. The sound construction is first explained in detail in $4.1 
for three downstream cylindrically propagating sound disturbances induced by the 
leading triple point. These three propagating sound waves, originally centred at the 
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selected locations depicted in 84.1, are used to draw the downstream sound waves for 
the other four cases. The propagation of sound waves generated at other locations 
along the slipstream can be similarly constructed. 

4.1. A weak Mach reflection with a jorwardTfacing reflected shock solution ,fbr a 

Figure 7(a) shows a typical MR-like wave configuration for a weak incident shock 
reflecting from a 2" wedge traced from the finite-fringe interferogram of Deschambault 
(1984). The initial pressure is 749 Torr. The Mach stem is straight and perpendicular to 
the wedge surface, and x is measured as 26.2". The constructed sound wave structure 
is illustrated in the figure where three propagating sound disturbances, originally 
centred at locations given by the intersection of the incident shock with the triple- 
point path after the times 0,0.5At, and 0.75At when the incident shock first encounters 
the wedge, are shown. At is the time taken for the incident shock to travel from 
the wedge corner to its present location. The horizontal distances from the leading 
incident shock to these three original sound generation centres are shown in the figure, 
given by ulAt ,  0.5ulAt, and 0.25u,At, respectively. They are then pulled forward by 
the incident shock for distances given by (ul  - u2)At. 0.5(ul - ul)At,  0.25(ul - u ~ ) A t ,  
correspondingly. u1,u2 are the wave-fixed flow velocities ahead of and behind the 
incident shock wave, respectively. Thus, the trajectory of sound generation centres 
induced by the triple point lies in the same direction as the incoming flow velocity 
ahead of the reflected wave. The sound speed downstream of the incident shock is 
1.11 times larger than that ahead of the shock. 

It can be seen that the outermost sound wave originating from the wedge corner, 
when the incident shock first collides with it, completely matches with the observed 
reflected wave emanating from the triple point. The reflected wave angle is measured 
at 90.0". The downstream sound structure, therefore, exhibits a limiting normal Mach 
wave configuration, and the observed reflected wave is, thus, verified to be a normal 
Mach wave supported by a sonically flying triple point. This sonic flow downstream 
of the incident shock relative to the triple point is checked by the oblique shock 
calculation, shown in figure 7(h),  where the reflected shock polar degenerates to a 
point on the incident shock polar when the observed i( is used in the calculation. The 
self-similarity of this reflected normal Mach wave is evident from the two competing 
velocities downstream of the incident shock: the relative velocity of the downstream 
fluid and the propagating triple point, and the local fluid sound speed. 

Actually, this reflected normal Mach wave represents a limiting configuration for 
the downstream, most forward-facing reflected shock or compression waves to be 
realized physically. The reason is that sound waves cannot coalesce into Mach waves 
that propagate upstream from the source of sound generation giving rise to them. 
On the other hand, the conventional three-shock theory requires a forward-facing 
reflected shock solution because the critical M ,  is 4.01 for this 2" wedge in air. The 
calculated x and 42 are 31.3" and 112.7", respectively, so they differ significantly from 
the experimentally observed values. The shock polar solution is given in figure 7(c). 
It is interesting to note that if this predicted forward-facing reflected shock were to 
occur physically, the flow downstream of the Mach stem would have been supersonic 
at the Mach number 1.06! Therefore, forward-facing reflected shock or compression 
wave solutions of pseudo-steady MR should be ruled out physically on the basis 
provided by the above downstream sound consideration or simply by arguing that 
90" is the maximum Mach angle possible in supersonic flows. In its place, for a 'small' 
reflecting wedge angle, a MR-like phenomenon with the reflected wave being a normal 

'small' wedge angle: M,s = 1.37, = 2", 7 = 1.4 
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FIGURE 7. (a)  Constructed sound wave structures downstream of observed pseudo-steady MR for 
M ,  = 1.37,8, = 2" from Deschambault (1984). 1 and 2, u1 = 1.37~1; 3, u2 = 0.61~1; 4, 0.25ulAt; 5, 
0.5ulAt 6, ulAt; 7, 0.25(ul -u2)At; 8, 0.5(ul -uz)At; 9, (uI -u2)At; 10, 0.25 x l . l l a A t ,  where a is the 
upstream sound speed. (b) Degeneration of the reflected shock polar (R) to a single point on the 
incident shock polar (I) for this case. (c )  The unphysical forward-facing reflected shock solution for 
this case. 

Mach wave occurs. Moreover, 54.5 shows where a MR-like phenomenon occurs when 
the three-shock theory gives a physically acceptable backward-facing reflected shock 
solution. Therefore, the requirement of a forward-facing reflected shock solution of a 
pseudo-steady MR from the three-shock theory serves to provide a sufficient condition 
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for the occurrence of MR-like phenomena. This single condition explains the two 
conditions for the occurrence of vNR proposed by Colella & Henderson (1990). 

We shall analytically define the 'smallness' of a reflecting wedge angle of a pseudo- 
steady MR in $4.2, where a reflected backward-facing finite compression wave solution 
from a modified three-shock theory is introduced. It is shown there that a physically 
acceptable backward-facing reflected finite compression wave solution of a pseudo- 
steady MR is possible only when the wedge angle is larger than a limiting 'small' 
value for a given set of M ,  and 1'. The limiting small wedge angle for this case is 8.52". 

The finding of the reflected normal Mach wave provides the physical basis for using 
the acoustic criterion for describing the reflected wave in this MR-like phenomenon. It 
can be used for accurately predicting the x of MR-like phenomena over 'small' wedge 
angles. This sonic flow criterion explains why Ben-Dor's (1978) technical approach 
for calculating x agrees excellently with experiment only for low incident shock Mach 
numbers at small reflecting wedge angles. He assumed that the x in weak MR over 
small wedge angles be large enough so that the flow downstream of the incident 
shock is at least sonic relative to the triple point. Application of this criterion for 
calculating gives 26.1" which is in almost exact agreement with the observed value, 
as expected. An exact formula is shown below, giving this acoustic-criterion-predicted 
x as a function of 7 ,  Ow, and M,,, obtained directly from an equation given by AMES 
(1953, p. 9): 

] "* . ( y  + l)M,: 
2yM$ + (3 - y)M,2 - 2 

xo = 90" - 0,. - arcsin 

We conclude discussion of this case by classifying a von Neumann reflection of the 
first kind (vNR- I) as a MR-like phenomenon over a 'small' reflecting wedge angle 
characterized by a reflected normal Mach wave. Properties of vNR over 'not-small' 
reflecting wedge angles are described in $34.2 and 4.5. 

4.2. A weak Mach reflection with a ,forward-facing rejected shock solution for a 

Figure 8(a)  depicts a MR-like wave configuration for a weak incident shock reflecting 
from a 14.58" wedge traced from the schlieren photograph reported by Colella & 
Henderson (1990). The initial pressure here and that in $4.3 were the ambient 
pressure. The observed x and $2 are 15.6" and 90", respectively. The estimated 
accuracy for angle measurement from the photographs of Colella & Henderson is 
within T0.5" for the reflected wave and T0.15 for all other wave angles. The contact 
discontinuity, which appears slightly broad, can be seen from the schlieren picture. 
The slipstream line shown in the figure is a mean line drawn through the centre of 
the observed discontinuity. The constructed trajectory of sound generation centres 
of the triple point falls 1.7" below the slipstream, so the observed reflected wave 
is backward-facing. One can regard this 1.7" deflection as the angle of an effective 
flying wedge induced from the propagating triple point. Fluid particles upstream and 
downstream of the reflected wave move along the lower and upper surfaces of this 
effective flying wedge, respectively. Thus, it can be viewed as the source of sound 
generation, from the upper surface of which reflected disturbances are constantly 
generated as the triple point propagates upstream. However, as will be illustrated, the 
coalescing process of sound-induced Mach waves in this case is not complete, and a 
reflected finite compression wave is formed instead. 

It can be seen from figure 8(a)  that the outermost sound wave, originating from 
the wedge corner, falls within the immediate vicinity of the observed reflected wave. 

hot-small' wedge angle: M ,  = 1.48,8,$ = 14.58",y = 5/3 
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FIGURE 8. (a) As figure 7(a)  but for M, = 1.48, Ow = 14.58" from Colella & Henderson (1990). 
( b )  The ( P ,  @)-polar solution for this case. (c) The unphysical forward-facing reflected shock solution 
for this case. ( d )  The shock polar solution of the limiting small reflecting wedge angle for this case, 
with Ow,,,,,, = 7.96". 

Although the sound structure near the triple point still somewhat resembles a limiting 
normal Mach wave configuration, sound waves generated by the triple point do 
not form a normal Mach line there. Actually, these sound waves constitute a 
leading Mach wave stemming from the triple point with a 79.4" Mach angle. This 
Mach angle corresponds to a very weak supersonic flow downstream of the incident 
shock with the Mach number being 1.017. An oblique shock calculation using the 
observed x gives the same flow Mach number. The close agreement shows the 
accuracy of our constructed sound structure. Now, this very weak supersonic flow 
downstream of the incident shock may not allow coalescence of Mach waves into 
a reflected shock wave to occur. This is supported by the fact that the constructed 
outermost sound wave matches closely with the observed reflected wave and that 
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the induced Mach wave lies close to the shape of the observed reflected wave in 
a large region from the triple point. Furthermore, it can be seen from Colella & 
Henderson's schlieren photograph that the observed reflected wave appears to have 
a finite thickness. This type of observed reflected wave was discussed by Sakurai 
et al. (1989) and it was suggested by them that the thickness of it is by no means 
negligible. The experimentally observed reflected wave shown in the figure is a 
mean line drawn through the centre of the edges of the observed reflected wave 
pattern. Most significantly, it is found that the maximum flow deflection achievable 
through an oblique shock with this flow is only 0.10", which is more than an order 
of magnitude smaller than the required 1.7" deflection across the observed reflected 
wave. Therefore, Rankine-Hugoniot jump conditions are not applicable for this 
reflected wave near the triple point. It is interesting to note here the practically 
zero entropy increase across a normal shock with this flow Mach number of 1.017. 
These observations provide convincing evidence that a reflected backward-facing 
finite compression wave should occur to turn the downstream flow parallel to the 
slipstream. This description of the observed reflected wave is in line with Colella 
& Henderson's (1990) numerical finding of a band of reflected smoothly distributed 
compression waves of finite thickness in a MR-like phenomenon. The weak oblique 
shock approximation linearly relating finite changes between the pressure and flow 
deflection across a weak oblique shock, as discussed by Liepmann & Roshko (1957) 
valid for small deflection, can be used to describe this reflected compression wave of 
small finite thickness : 

where MI is the incident flow Mach number of the reflected wave. 
The thickness of this reflected compression wave is characterized by a small but 

finite AB, so that the weak oblique shock approximation is applicable. A key step 
in deriving the above approximation is the substitution of the shock angle by Mach 
angle in this linearized pressure-deflection oblique shock relation. Therefore, the 
reflected finite compression wave can be considered as composed of a series of 
weak oblique shock waves of the same strength. Each weak oblique shock wave 
may then be viewed as made up of many isentropic converging Mach waves. The 
incorporation of this ( P ,  8)-relation for a reflected finite compression wave, in place 
of jump relations of a reflected shock wave, into otherwise the same three-shock 
theory is expected to provide an adequate description for this observed MR-like 
phenomenon. 

Ben-Dor (1992) suggested this simple gasdynamic consideration for the reflected 
compression wave of a vNR. However, the (P,B)-polar solution discussed by him 
faces forward of the triple point. The polar solution should be obtained by drawing 
a line with the gradient above calculated, in the direction of decreasing deflection 
and increasing pressure, from the incident shock polar. The incident flow Mach 
number M I  ahead of the reflected wave is determined by iteratively specifying x, 
thereby M I ,  until the normal, straight Mach stem boundary condition is satisfied. 
A schematic drawing of the (P,B)-polar solution of this MR-like phenomenon is 
shown in figure 8(b), where the intersection (points 2 and 3) of the linear com- 
pression polar and the incident shock polar gives the flow properties sought behind 
the backward-facing reflected compression wave and the Mach stem. The corre- 
sponding reflected shock polar is also shown in the figure. It can be seen that 
the tiny reflected shock polar does not intersect the incident polar except for the 



324 J .  J .  Liu 

Mach line degeneracy point. The computed x, 15.9", and the angle between the 
slipstream and trajectory of the triple-point sound generation centres, 1.7", from 
this modified three-shock theory, are in close agreement with the experimentally ob- 
served values. The above analyses therefore experimentally and analytically demon- 
strate the existence of a reflected backward-facing finite compression wave in this 
MR-like phenomenon over a 14.58" wedge. Since the computed flow Mach num- 
ber downstream of the incident shock is near sonic, it is worthwhile to calculate 
x using the acoustic criterion of vNR-I, identified in $4.1, for this MR-like phe- 
nomenon. One obtains x = 15.0", which is only 0.6" smaller than the experimental 
value. 

The conventional three-shock theory, on the other hand, requires a forward-facing 
reflected shock solution as given in the shock polar in figure 8(c). The predicted x and 
62 are 21.4" and 9 7 2 ,  respectively, so they clearly do not agree with the observed 
values. Thus, it is confirmed here that theoretically predicted forward-facing reflected 
shock solutions of pseudo-steady MR should be ruled out physically. In their place, 
for a 'not-small' reflecting wedge, a MR-like phenomenon with the reflected wave 
being a backward-facing finite compression wave occurs, and it is classified as the 
second kind von Neumann reflection (vNR-11). 

It is worth noting that the effect of viscous displacement thickness on the flow 
downstream of the incident shock by the shear layer (rather than a slipstream) may 
be argued not small in comparison with the 1.7" turning angle. This consideration, 
however, will not change the main features of the analysis because the downstream 
flow is verified to be very weak supersonically, having M I  = 1.017. That is, only a 
backward-facing reflected finite compression wave solution can provide a predicted x 
in reasonably close agreement with the experimentally observed value. 

The necessity of classifying a reflecting wedge angle of a pseudo-steady M R  
as 'small' arises from the occurrence of the physically unrealistic forward-facing 
reflected finite compression wave solution in the above-discussed modified three- 
shock theory when it becomes sufficiently small for a given combination of M ,  and 
y .  A 'small' reflecting wedge angle of a pseudo-steady MR is therefore defined as, 
for a given set of Ms and y ,  a wedge angle below which a backward-facing reflected 
finite compression wave solution satisfying the normal, straight Mach stem boundary 
condition is theoretically unobtainable. Figure 8(d )  illustrates the ( P ,  @-polar solution 
for the limiting small wedge angle of vNR-I1 for the present case, where the flow 
downstream of the incident shock is across a reflected normal compression wave. The 
computed 'small' angle is 7.96". 

It is important to establish the regimes of vNR-I and vNR-11. Curve (a)  in 
figure 9 shows the calculated limiting small reflecting wedge angles for y = 7/5 
and 1.0 < M,  < 4.0. VNR-I occurs when the wedge angle falls below this curve. 
Curve (b)  is the computed boundary separating regimes of backward- from fonvard- 
facing reflected shock solutions of pseudo-steady MR. This boundary terminates at 
M,  = 1.11, where it meets the transition boundary dividing regimes of RR from MR 
and vNR. Classical Mach reflections with reflected backward-facing shock waves are 
possible only when the reflecting wedge angle is above curve (b) ,  while vNR-I1 take 
place in the region between curves (b)  and (a) .  Figure 10 shows the comparison 
of calculated limiting small reflecting wedge angles between y = 7/5 and 5/3 for 
1.0 < M ,  < 4.0. It can be seen that the two theoretical 'small' reflecting wedge 
angles are practically indistinguishable in the range 1.0 < M,  d 1.7. The 'small' 
wedge angles for y = 5/3 then become slightly larger than those for y = 7/5 when 
M ,  2 1.7. 
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1 2 3 4 

FIGURE 9. Boundaries separating regimes of vNR-I, vN R-11, backward-facing MR, and RR for 
y = 715. 

M 

FIGURE 10. Theoretical limiting small reflecting wedge angles of pseudo-steady MR for y = 7 /5  
(solid line) and 5 / 3  (dashed line). 

4.3. A weak Mach reflection with a backward-facing rejected shock solution. 
M ,  = 1.47,0, = 34.6", y = 513 

A typical weak MR wave configuration, where the three-shock theory gives a 
backward-facing reflected shock solution, is shown in figure 11. This wave con- 
figuration is traced from the schlieren picture of Colella & Henderson (1990). The 
Mach stem is straight and perpendicular to the wedge surface, and the observed x 
is 4.5". The observed slipstream, although having finite thickness, can be seen to be 
quite straight near the triple point. It is shown by the solid line drawn equidistant 
between the straight portion of this observed discontinuity. The constructed sound 
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FIGURE 11. Constructed sound wave structures downstream of observed pseudo-steady MR for 
M ,  = 1.47, 0, = 34.6" from Colella & Henderson (1990). 

structure downstream of the incident shock shows that the Mach wave induced by 
the propagating triple point is formed significantly inside the observed reflected wave. 
The trajectory of sound generation centres of the triple point falls 7.7" below the 
slipstream. These observations suggest that a reflected shock is required to turn the 
downstream flow parallel to the slipstream. 

However, the conventional three-shock theory predicts x and the angle between the 
trajectory of the triple-point sound generation centres and the slipstream to be 8.0" 
and 4.7", respectively. Thus the theory fails to describe this weak MR, even though 
it does provide a backward-facing reflected shock solution. If one uses, instead, 
the measured x to calculate angles between various discontinuities in the vicinity of 
the triple point, one obtains the angles between the incident and reflected shocks 
(mi,) and between the reflected shock and slipstream (co,,) to be 55.8" and 74.0", 
respectively. Therefore, the calculated coir is 7.7" smaller than the observed angle, 
while the computed orS becomes 1.5" larger than the measured value. This result, 
however, is opposite to what Ben-Dor (1987) concluded for the effect of viscous 
displacement thickness in the prediction of various wave angles of a pseudo-steady 
MR. For an incident shock of Mach number 2.71 reflecting off a 47.1" wedge, he used 
the experimentally observed x in the three-shock theory and found that the calculated 
coir is 5.0" larger than the experimental value while the computed a,, is 4.7" smaller 
than the observed value. Ben-Dor then obtained excellent agreement between the 
experiment and theory when the viscous displacement effect along the slipstream is 
integrated into the three-shock theory. Therefore, the failure of the three-shock theory 
to describe this weak MR cannot be attributed to the viscous effect according to the 
result from Ben-Dor's (1987) analysis. 

In fact, this large discrepancy between the predicted and measured x can be 
expected to exist for weak MR with theoretically predicted backward-facing reflected 
shock solutions, based on the computed and measured x presented in figure 3. We 
have shown in $4.2 that the large discrepancy there can be very well explained by 
replacing the physically unacceptable forward-facing reflected shock solution with 
a backward-facing reflected finite compression wave solution in otherwise the same 
three-shock theory. Now the only difference in the experimental conditions between 
this and $4.2 is the wedge angle being considerably larger here (the difference in M ,  
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is too small). It is shown in figure 9 that, when M ,  is greater than 1.11, a MR will 
transform into a vNR-I1 as the wedge angle decreases. Therefore, a key question 
needs to be addressed before adequate explanations can be provided for the existing 
large discrepancies between the three-shock theory and experiment for weak MR, 
when the theory gives backward-facing reflected shock solutions : Is the problem 
related to the process of a continuously smooth transition from MR to vNR-11, as is 
evident from the comparison between the measured and computed x given in figure 
3? This suggestion is also supported by the result in 94.5 where a strong incident 
shock reflecting from a 'not-small' wedge angle, when the three-shock theory provides 
a backward-facing reflected shock solution, is a vNR-11. 

4.4. A strong Mach reflection with a ,forward-facing reflected shock solution for  a 

Figure I2(a) depicts a MR-like wave configuration for a strong incident shock 
reflecting from a 'not-small' 2" wedge traced from Deschambault's infinite-fringe 
interferometric picture. The initial pressure is 15 Torr. The Mach stem is straight and 
perpendicular to the wedge surface, and a thin slipstream is visible from the picture. 
The observed x and 42 are 22.6" and 90.0°, respectively. The theoretical limiting 
small reflecting wedge angle is only 1.46" for this case. The classical three-shock 
theory gives a forward-facing reflected shock solution for this MR-like phenomenon. 
The computed x and 42 are 22.78" and 90.3", respectively. It is noteworthy that the 
calculated x agrees closely with the experiment when the computed reflected shock is 
forward-facing. Actually, a vNR should develop according to the sufficient condition 
for its existence. This is supported by the constructed sound structure where the 
outermost sound wave exactly matches with the observed reflected wave in regions 
not far from the triple point. It is also consistent with the identical match between 
the observed slipstream and the trajectory of sound generation centres of the triple 
point. The calculated x, 22.43", using the downstream acoustic criterion, is in close 
agreement with the observed value. On the other hand, the fact this wedge angle is 
not 'small' implies that a reflected backward-facing finite compression wave solution 
is obtainable. This is shown in a locally enlarged shock polar solution of vNR-11, 
given in figure 12(b), where the origin of the reflected linear ( P ,  0)-compression polar 
lies very close to the sonic point of the incident shock polar. The corresponding very 
tiny reflected shock polar is also shown to highlight the weakness of this downstream 
supersonic flow (MI = 1.0005). The computed x is 22.44", which is practically 
undistinguishable from the value predicted by the downstream acoustic criterion. 
This case serves to illustrate the inherent nonlinearity of MR phenomena where 
the difference in x obtained from the experiment and the three different theoretical 
reflection solutions - forward-facing shock wave, backward-facing compression wave, 
and normal Mach wave - are within 0.4" . 

'not-small' wedge angle: M ,  = 3.93,HW = 2", 7 = 1 / 5  

4.5. A strong Mach rej7ection with a near;forward-jacing reflected shock solution for  a 

Figure 13(a) shows a MR-like phenomenon for a strong shock reflecting from a 
'not-small' lo" wedge traced from the finite-fringe interferogram of Deschambault. 
The limiting small reflecting wedge angle is 5.0" for this case. The initial pressure is 
50 Torr. The Mach stem is straight and perpendicular to the wedge surface. The 
thin slipstream can be identified from the interferometric picture. The observed x 
and 42 are 18.5" and 90.0", respectively. The conventional three-shock theory gives a 
near-forward-facing reflected shock solution, as shown in figure 13(b). The computed 

'not-small' wedge angle: M,  = 2.03,8,. = lo", y = 7/5 
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FIGURE 12. (a) Constructed sound wave structures downstream of observed pseudo-steady MR for 
M, = 3.93, 0, = 2" from Deschambault (1984). (b)  The reflected backward-facing finite compression 
wave solution for this case. 
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FIGURE 13. ( a )  As figure 12(a) but for M, = 2.03, 8, = lo". ( b )  The near forward-facing reflected 
shock solution for this case. ( c )  The ( P ,  @)-polar solution for this case. 

x and @ 2  are 20.5" and 89.6", respectively. Thus, it is shown that a large discrepancy 
between the three-shock theory and experiment also exists for a strong MR over a 
'not-small' wedge angle, when the theory provides a backward-facing reflected shock 
solution. 

The constructed sound structure shows that the outermost sound wave falls just 
slightly inside the observed reflected wave near the triple point. Deschambault's 
interferogram reveals that there is a small region immediately behind the front of the 
reflected wave where the slope of the fringes changes rapidly. Therefore, this observed 
reflected wave has finite thickness, and the observed reflected wave is a mean line 
drawn through the centre of the reflected interferometric wave pattern. The flow Mach 
number downstream of the incident shock computed from the observed x is 1.018. In 
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addition, it can be seen from the figure that the flow deflection across the observed 
reflected wave is 1.2". Thus, the characteristics of the flow field downstream of the 
incident shock, responsible for the formation of the reflected wave, are essentially the 
same as those discussed in $4.2. This allows the application of the modified three- 
shock theory, also discussed there, for this MR-like phenomenon. The calculated x 
and angle between the slipstream and the direction of the incident flow before the 
reflected wave are 18.5" and 1.3", respectively, so they are in excellent agreement 
with the experimental values. The computed (P,8)-polar solution is given in figure 
13(c). We have thus shown that this observed strong MR belongs to vNR-11. However, 
unlike the vNR-I1 in $§4.2 and 4.4, its occurrence here is not predicted by the sufficient 
condition for its existence. This finding is of significance in that it shows Nature's 
choice of a weaker possible vNR-I1 solution, when the three-shock theory provides a 
physically acceptable near-forward-facing reflected shock solution. Consequently, one 
can infer that the large discrepancies between the classical three-shock theory and 
experiment for strong MR, when the theory gives near-forward-facing reflected shock 
solutions, can be attributed to the occurrence of vNR-I1 or the continuously smooth 
transition between MR and vNR-11. 

Finally, it is instructive to calculate the x of this observed vNR-I1 using the 
downstream acoustic criterion of vNR-I. The computed result, x = 17.86", deviates 
from the experiment by only 0.6". This illustrates the applicability of the acoustic 
approximation for the reflected waves of vNR-11, even when the three-shock theory 
gives a physically acceptable reflection solution. Since a computed x from the 
downstream acoustic criterion decreases linearly as Ow increases for a given set of Ms 
and y ,  one expects the prediction of x for vNR-I1 over not large 0, can be quite 
accurately determined using this approximation. Two series of calculations for 2, 
using both the exact (P,8)-polar solution of vNR-I1 and the downstream acoustic 
criterion, were performed for 8, = 10" and 15" with y = 7/5 and 1.0 < M ,  < 3.0. 
The difference in the two computed x is plotted in figure 14. It is found, within the 
regime determined by forward-facing reflected shock solutions of MR for 8, up to 
15" and M,  not smaller than 1.09, that the predicted x of vNR-I1 using the acoustic 
approximation gives results that differ from those obtained from the exact ( P ,  @-polar 
solution by less than 1.49". The boundary separating vNR-I1 from backward-facing 
MR is also shown in the figure. 

5. Conclusions 
It is shown that the sound structures downstream of the incident shock waves of 

pseudo-steady MR provide physical bases for using the acoustic criterion or the weak 
oblique shock approximation for describing reflected waves in MR-like phenomena. 
Several important findings that successfully explain observed MR-like phenomena 
and identify key features of vNR are obtained. 

For experimentally observed MR-like phenomena over 'small' wedge angles, where 
the classical three-shock theory requires forward-facing reflected shock solutions, 
downstream sound wave structures show that the observed reflected wave is a limiting 
normal Mach wave. The acoustic criterion for the reflected wave is thus identified, 
and it gives almost exact predictions for the observed triple-point trajectory angles, x. 
The 'smallness' of a reflecting wedge angle of a pseudo-steady MR is defined as, for a 
given set of M,  and y ,  the wedge angle below which a reflected backward-facing finite 
compression wave solution of a pseudo-steady MR satisfying the normal, straight 
Mach stem boundary condition is theoretically unobtainable. 
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FIGURE 14. Difference in the prediction of x between using the downstream acoustic criterion and 
from the exact polar solution of vNR-I1 for 8,. = lo" and 15". 

For experimentally observed MR-like phenomena over 'not-small' wedge angles, 
where the three-shock theory requires forward-facing reflected shock solutions, down- 
stream sound structures show that the observed reflected waves exhibit characteristics 
of backward-facing compression waves of small finite thickness. The application of 
the weak oblique shock approximation to the reflected wave in otherwise the same 
three-shock theory for the observed MR-like phenomena gives the predicted x in 
close agreement with the experiments. 

It is concluded that forward-facing reflected shock solutions of pseudo-steady MR 
should be ruled out physically because sound waves cannot coalesce into Mach waves 
that propagate upstream of the triple point. In their place, MR-like phenomena occur 
with the reflected waves being normal Mach waves or finite compression waves for 
'small' or 'not-small' reflecting wedge angles, respectively, and they are classified as 
vNR-I or vNR-11, respectively. Boundaries separating vNR-I, vNR-11, and backward- 
facing MR regimes are determined. 

A comparison between theory and experiment, when the three-shock theory pro- 
vides physically acceptable near-forward-facing reflected shock solutions, reveals Na- 
ture's choice of a weaker possible reflection solution, i.e. a reflected backward-facing 
finite compression wave, instead of a reflected backward-facing shock wave. This 
finding suggests that the large discrepancies between the classical theory and exper- 
iment, when the theory gives near-forward-facing reflected shock solutions, can be 
attributed to the occurrence of vNR-I1 or the continuously smooth transition between 
MR and vNR-11. A sufficient condition for the existence of vNR is then given by the 
requirement of forward-facing reflected shock solutions of pseudo-steady MR from 
the classical three-shock theory. 
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